Ultra-thin crystalline silicon films produced by plasma assisted epitaxial growth on silicon wafers and their transfer to foreign substrates\*

نویسنده

  • M. Moreno
چکیده

We have developed a new process to produce ultra-thin crystalline silicon films with thicknesses in the range of 0.1−1 μm on flexible substrates. A crystalline silicon wafer was cleaned by SiF4 plasma exposure and without breaking vacuum, an epitaxial film was grown from SiF4, H2 and Ar gas mixtures at low substrate temperature (Tsub ≈ 200 ◦C) in a standard RF PECVD reactor. We found that H2 dilution is a key parameter for the growth of high quality epitaxial films and modification of the structural composition of the interface with the c-Si wafer, allowing one to switch from a smooth interface at low hydrogen flow rates to a fragile one, composed of hydrogen-rich micro-cavities, at high hydrogen flow rates. This feature can be advantageously used to separate the epitaxial film from the crystalline Si wafer. As a example demonstration, we show that by depositing a metal film followed by a spin-coated polyimide layer and applying a moderate thermal treatment to the stack, the fragile interface breaks down and allows one to obtain an ultrathin crystalline wafer on the flexible polyimide support.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low temperature plasma deposition of silicon thin films: From amorphous to crystalline

We report on the epitaxial growth of crystalline silicon films on (100) oriented crystalline silicon substrates by standard plasma enhanced chemical vapor deposition at 175 °C. Such unexpected epitaxial growth is discussed in the context of deposition processes of silicon thin films, based on silicon radicals and nanocrystals. Our results are supported by previous studies on plasma synthesis of...

متن کامل

SURFACE PASSIVATION QUALITY AND STRUCTURE OF THIN Si:H LAYERS ON N-TYPE CRYSTALLINE Si (100) AND (111) WAFERS

Silicon surface passivation of hydrogenated silicon (Si:H) thin films deposited by radio frequency (RF) and direct current (DC) plasma process was investigated by measuring effective minority carrier lifetime (τeff) on Si (100) and (111) wafers and correlated with the silicon heterojunction (SHJ) cell performances. Apparently the higher ion bombardment in DC compared to RF plasma during growth ...

متن کامل

Substrate orientation dependence on the solid phase epitaxial growth rate of Ge

Related Articles A new method for the synthesis of epitaxial layers of silicon carbide on silicon owing to formation of dilatation dipoles J. Appl. Phys. 113, 024909 (2013) Carbon flux assisted graphene layer growth on 6H-SiC(000-1) by thermal decomposition J. Appl. Phys. 113, 014311 (2013) Fabrication of large-grained thin polycrystalline silicon films on foreign substrates by titanium-assiste...

متن کامل

Optical properties of silicon nano layers by using Kramers- Kronig method

Silicon thin layers are deposited on glass substrates with the thickness of 103 nm, 147 nm and 197 nm. The layers are produced with electron gun evaporation method under ultra-high vacuum condition. The optical Reectance and the Transmittance of produced layers were measured by using spectrophotometer. The optical functions such as, real and imaginary part of refractive index, real and imaginar...

متن کامل

Sol – Gel Spin Coated Cadmium Sulphide ‎Thin Films on Silicon (1 0 0) Substrates for ‎Optoelectronic Applications

Cadmium chalcogenides with appropriate band gap energy have been attracting a great deal of attention because of their potential applications in optoelectronic devices. In this work CdS thin films were deposited on p – type silicon substrates by sol – gel spin coating method at different substrate temperatures. The CdS deposited wafers were characterized by X‐ray diffracti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011